Anticipating Cognitive Effort: Roles of Perceived Error-likelihood and Time Demands

Article (PDF Available)inPsychological Research 83(8) · November 2017 with 304 Reads

DOI: 10.1007/s00426-017-0943-x
Why are some actions evaluated as effortful? In the present set of experiments we address this question by examining individuals’ perception of effort when faced with a trade-off between two putative cognitive costs: how much time a task takes vs. how error-prone it is. Specifically, we were interested in whether individuals anticipate engaging in a small amount of hard work (i.e., low time requirement, but high error-likelihood) vs. a large amount of easy work (i.e., high time requirement, but low error-likelihood) as being more effortful. In between-subject designs, Experiments 1 through 3 demonstrated that individuals anticipate options that are high in perceived error-likelihood (yet less time consuming) as more effortful than options that are perceived to be more time consuming (yet low in error-likelihood). Further, when asked to evaluate which of the two tasks was (a) more effortful, (b) more error-prone, and (c) more time consuming, effort-based and error-based choices closely tracked one another, but this was not the case for time-based choices. Utilizing a within-subject design, Experiment 4 demonstrated overall similar pattern of judgments as Experiments 1 through 3. However, both judgments of error-likelihood and time demand similarly predicted effort judgments. Results are discussed within the context of extant accounts of cognitive control, with considerations of how error-likelihood and time demands may independently and conjunctively factor into judgments of cognitive effort.
Dunn, T.L., Inzlicht, M., & Risko, E.F. (2019). Psychological Research, 83, 1033-1056.

References

  1. Ackerman, R., & Thompson, V. A. (2017). Meta-reasoning: Monitoring and control of thinking and reasoning. Trends in Cognitive Sciences, 21(8), 607–617.

    Article PubMed Google Scholar

  2. Akçay, Ç., & Hazeltine, E. (2007). Conflict monitoring and feature overlap: Two sources of sequential modulations. Psychonomic Bulletin and Review, 14(4), 742–748.

    Article PubMed Google Scholar

  3. Alain, C., McNeely, H. E., He, Y., Christensen, B. K., & West, R. (2002). Neurophysiological evidence of error-monitoring deficits in patients with schizophrenia. Cerebral Cortex, 12(8), 840–846.

    Article PubMed Google Scholar

  4. Apps, M. A., Grima, L. L., Manohar, S., & Husain, M. (2015). The role of cognitive effort in subjective reward devaluation and risky decision-making. Scientific Reports, 5, 16880.

    Article PubMed PubMed Central Google Scholar

  5. Ashcraft, M. H., & Faust, M. W. (1994). Mathematics anxiety and mental arithmetic performance: An exploratory investigation. Cognition and Emotion, 8(2), 97–125.

    Article Google Scholar

  6. Baddeley, A. D., & Hitch, G. (1974). Working memory. Psychology of Learning and Motivation, 8, 47–89.

    Article Google Scholar

  7. Bates, A. T., Kiehl, K. A., Laurens, K. R., & Liddle, P. F. (2002). Error-related negativity and correct response negativity in schizophrenia. Clinical Neurophysiology, 113(9), 1454–1463.

    Article PubMed Google Scholar

  8. Behrens, T. E., Woolrich, M. W., Walton, M. E., & Rushworth, M. F. (2007). Learning the value of information in an uncertain world. Nature Neuroscience, 10(9), 1214–1221.

    Article PubMed Google Scholar

  9. Bijleveld, E., Custers, R., & Aarts, H. (2009). The unconscious eye opener: Pupil dilation reveals strategic recruitment of resources upon presentation of subliminal reward cues. Psychological Science, 20(11), 1313–1315.

    Article PubMed Google Scholar

  10. Blain, B., Hollard, G., & Pessiglione, M. (2016). Neural mechanisms underlying the impact of daylong cognitive work on economic decisions. Proceedings of the National Academy of Sciences, 113(25), 6967–6972.

    Article Google Scholar

  11. Boehler, C. N., Hopf, J. M., Krebs, R. M., Stoppel, C. M., Schoenfeld, M. A., Heinze, H. J., & Noesselt, T. (2011). Task-load-dependent activation of dopaminergic midbrain areas in the absence of reward. Journal of Neuroscience, 31(13), 4955–4961.

    Article PubMed Google Scholar

  12. Botvinick, M. M. (2007). Conflict monitoring and decision making: reconciling two perspectives on anterior cingulate function. Cognitive, Affective, & Behavioral Neuroscience, 7(4), 356–366.

    Article Google Scholar

  13. Botvinick, M. M., & Braver, T. S. (2015). Motivation and cognitive control: From behavior to neural mechanism. Annual Review of Psychology, 66, 83–113.

    Article PubMed Google Scholar

  14. Botvinick, M. M., & Cohen, J. D. (2014). The computational and neural basis of cognitive control: charted territory and new frontiers. Cognitive Science, 38(6), 1249–1285.

    Article PubMed Google Scholar

  15. Botvinick, M. M., Huffstetler, S., & McGuire, J. T. (2009). Effort discounting in human nucleus accumbens. Cognitive, Affective, and Behavioral Neuroscience, 9(1), 16–27.

    Article Google Scholar

  16. Botvinick, M. M., & Rosen, Z. B. (2009). Anticipation of cognitive demand during decision-making. Psychological Research PRPF, 73(6), 835–842.

    Article Google Scholar

  17. Boureau, Y. L., Sokol-Hessner, P., & Daw, N. D. (2015). Deciding how to decide: Self control and meta-decision making. Trends in Cognitive Sciences, 19(11), 700–710.

    Article PubMed Google Scholar

  18. Brown, J. W., & Braver, T. S. (2005). Learned predictions of error likelihood in the anterior cingulate cortex. Science, 307(5712), 1118–1121.

    Article PubMed Google Scholar

  19. Brown, J. W., & Braver, T. S. (2007). Risk prediction and aversion by anterior cingulate cortex. Cognitive, Affective, & Behavioral Neuroscience, 7(4), 266–277.

    Article Google Scholar

  20. Bryce, D., & Bratzke, D. (2014). Introspective reports on reaction times in dual-tasks reflect experienced difficulty rather than the timing of cognitive processes. Consciousness and Cognition, 27, 254–267.

    Article PubMed Google Scholar

  21. Buhrmester, M., Kwang, T., & Gosling, S. D. (2011). Amazon’s Mechanical Turk a new source of inexpensive, yet high-quality, data? Perspectives on Psychological Science, 6(1), 3–5.

    Article PubMed Google Scholar

  22. Cacioppo, J. T., & Petty, R. E. (1982). The need for cognition. Journal of Personality and Social Psychology, 42(1), 116–131.

    Article Google Scholar

  23. Cameron, D., Hutcherson, C., Ferguson, A. M., Scheffer, J. A., & Inzlicht, M. (2017). Empathy is hard work: People choose to avoid empathy because of its cognitive costs. http://psyarxiv.com/jkc4n. Accessed 25 Sept 2017.

  24. Chong, T. T. J., Apps, M., Giehl, K., Sillence, A., Grima, L. L., & Husain, M. (2017). Neurocomputational mechanisms underlying subjective valuation of effort costs. PLoS Biology, 15(2), e1002598.

    Article PubMed PubMed Central Google Scholar

  25. Danckert, J. A., & Allman, A. A. A. (2005). Time flies when you’re having fun: Temporal estimation and the experience of boredom. Brain and Cognition, 59(3), 236–245.

    Article PubMed Google Scholar

  26. Davenport, H. J. (1911). Cost and its significance. The American Economic Review, 1(4), 724–752.

    Google Scholar

  27. Dehaene, S., Posner, M. I., & Tucker, D. M. (1994). Localization of a neural system for error detection and compensation. Psychological Science, 5(5), 303–305.

    Article Google Scholar

  28. Desender, K., Buc Calderon, C., Van Opstal, F., & Van den Bussche, E. (2017a). Avoiding the conflict: Metacognitive awareness drives the selection of low-demand contexts. Journal of Experimental Psychology: Human Perception and Performance, 43(7), 1397–1410.

    PubMed Google Scholar

  29. Desender, K., Van Opstal, F., & Van den Bussche, E. (2017b). Subjective experience of difficulty depends on multiple cues. Scientific Reports, 7, 44222. https://doi.org/10.1038/srep44222.

    Article PubMed PubMed Central Google Scholar

  30. Diede, N. T., & Bugg, J. M. (2017). Cognitive effort is modulated outside of the explicit awareness of conflict frequency: Evidence from pupillometry. Journal of Experimental Psychology. Learning, Memory, and Cognition, 43(5), 824–835.

    Article PubMed PubMed Central Google Scholar

  31. Dixon, M. L., & Christoff, K. (2012). The decision to engage cognitive control is driven by expected reward-value: Neural and behavioral evidence. PLoS One, 7(12), e51637.

    Article PubMed PubMed Central Google Scholar

  32. Dreisbach, G., & Fischer, R. (2012). Conflicts as aversive signals. Brain and Cognition, 78(2), 94–98.

    Article PubMed Google Scholar

  33. Dunn, T. L., Koehler, D. J., & Risko, E. F. (2017). Evaluating effort: Influences of evaluation mode on judgments of task-specific efforts. Journal of Behavioral Decision Making, 30(4), 869–888.

    Article Google Scholar

  34. Dunn, T. L., Lutes, D. J. C., & Risko, E. F. (2016). Metacognitive evaluation in the avoidance of demand. Journal of Experimental Psychology: Human Perception and Performance, 42(9), 1372–1387.

    PubMed Google Scholar

  35. Dunn, T. L., & Risko, E. F. (2016a). Toward a metacognitive account of cognitive offloading. Cognitive Science, 40(5), 1080–1127.

    Article PubMed Google Scholar

  36. Dunn, T. L., & Risko, E. F. (2016b). Understanding the Cognitive Miser: Cue-utilization in Effort Avoidance. https://www.researchgate.net/publication/303543690_Understanding_the_Cognitive_Miser_Cue-utilization_in_Effort_Avoidance. Accessed 01 May 2016.

  37. Eriksen, C. W. (1995). The flankers task and response competition: A useful tool for investigating a variety of cognitive problems. Visual Cognition, 2–3, 101–118.

    Article Google Scholar

  38. Evans, J. S. B., & Stanovich, K. E. (2013). Dual-process theories of higher cognition: Advancing the debate. Perspective on Psychological Science, 8(3), 223–241.

    Article Google Scholar

  39. Falkenstein, M., Hoormann, J., Christ, S., & Hohnsbein, J. (2000). ERP components on reaction errors and their functional significance: A tutorial. Biological Psychology, 51(2), 87–107.

    Article PubMed Google Scholar

  40. Feng, S. F., Schwemmer, M., Gershman, S. J., & Cohen, J. D. (2014). Multitasking versus multiplexing: Toward a normative account of limitation in the simultaneous execution of control-demanding behaviors. Cognitive, Affective, and Behavioral Neuroscience, 14(1), 129–146.

    Article Google Scholar

  41. Forster, K. I., & Forster, J. C. (2003). DMDX: A windows display program with millisecond accuracy. Behavior Research Methods, Instruments, and Computers, 35, 116–124.

    Article PubMed Google Scholar

  42. Frank, M. J., Woroch, B. S., & Curran, T. (2005). Error-related negativity predicts reinforcement learning and conflict biases. Neuron, 47(4), 495–501.

    Article PubMed Google Scholar

  43. Gehring, W. J., & Fencsik, D. E. (2001). Functions of the medial frontal cortex in the processing of conflict and errors. Journal of Neuroscience, 21(23), 9430–9437.

    Article PubMed Google Scholar

  44. Gehring, W. J., Goss, B., Coles, M. G., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4(6), 385–390.

    Article Google Scholar

  45. Gehring, W. J., Himle, J., & Nisenson, L. G. (2000). Action-monitoring dysfunction in obsessive-compulsive disorder. Psychological Science, 11(1), 1–6.

    Article PubMed Google Scholar

  46. Gershman, S. J., Horvitz, E. J., & Tenenbaum, J. B. (2015). Computational rationality: A converging paradigm for intelligence in brains, minds, and machines. Science, 349(6245), 273–278.

    Article PubMed Google Scholar

  47. Gigerenzer, G. (2008). Why heuristics work. Perspectives on Psychological Science, 3(1), 20–29.

    Article PubMed Google Scholar

  48. Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the fast and frugal way: Models of bounded rationality. Psychological Review, 103(4), 650–669.

    Article PubMed Google Scholar

  49. Gigerenzer, G., Todd, P. M., & ABC Research Group. (1999). Simple heuristics that makes us smart. New York, NY: Oxford University Press.

    Google Scholar

  50. Gläscher, J., Hampton, A. N., & O’Doherty, J. P. (2009). Determining a role for ventromedial prefrontal cortex in encoding action-based value signals during reward-related decision making. Cerebral Cortex, 19(2), 483–495.

    Article PubMed Google Scholar

  51. Gold, J. M., Kool, W., Botvinick, M. M., Hubzin, L., August, S., & Waltz, J. A. (2015). Cognitive effort avoidance and detection in people with schizophrenia. Cognitive, Affective, & Behavioral Neuroscience, 15(1), 145–154.

    Article Google Scholar

  52. Gray, W. D., Sims, C. R., Fu, W.-T., & Schoelles, M. J. (2006). The soft constraints hypothesis: A rational analysis approach to resource allocation for interactive behavior. Psychological Review, 113(3), 461–482.

    Article PubMed Google Scholar

  53. Griffiths, T. L., Lieder, F., & Goodman, N. D. (2015). Rational use of cognitive resources: Levels of analysis between the computational and the algorithmic. Topics in Cognitive Science, 7(2), 217–229.

    Article PubMed Google Scholar

  54. Hajcak, G., & Foti, D. (2008). Errors are aversive: Defensive motivation and the error related negativity. Psychological Science, 19(2), 103–108.

    Article PubMed Google Scholar

  55. Hajcak, G., McDonald, N., & Simons, R. F. (2003). To err is autonomic: Error-related brain potentials, ANS activity, and post-error compensatory behavior. Psychophysiology40(6), 895–903.

    Article PubMed Google Scholar

  56. Hajcak, G., McDonald, N., & Simons, R. F. (2004). Error-related psychophysiology and negative affect. Brain and Cognition, 56(2), 189–197.

    Article PubMed Google Scholar

  57. Hajcak, G., Moser, J. S., Yeung, N., & Simons, R. F. (2005). On the ERN and the significance of errors. Psychophysiology, 42(2), 151–160.

    Article PubMed Google Scholar

  58. Hernandez-Lallement, J., van Wingerden, M., Marx, C., Srejic, M., & Kalenscher, T. (2014). Rats prefer mutual rewards in a prosocial choice task. Frontiers in Neuroscience, 8, 443.

    PubMed Google Scholar

  59. Hockey, G. R. J. (2011). A motivational control theory of cognitive fatigue. In P. L. Ackerman (Ed.), Cognitive fatigue: Multidisciplinary perspectives on current research and future applications (pp. 167–188). Washington, DC: American Psychological Association.

    Google Scholar

  60. Holroyd, C. B., & Coles, M. G. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109(4), 679–709.

    Article PubMed Google Scholar

  61. Inzlicht, M., Bartholow, B. D., & Hirsh, J. B. (2015). Emotional foundations of cognitive control. Trends in Cognitive Sciences, 19(3), 126–132.

    Article PubMed PubMed Central Google Scholar

  62. Inzlicht, M., Schmeichel, B. J., & Macrae, C. N. (2014). Why self-control seems (but may not be) limited. Trends in Cognitive Sciences, 18(3), 127–133.

    Article PubMed Google Scholar

  63. Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford, England: Oxford University Press.

    Google Scholar

  64. John, O. P., & Srivastava, S. (1999). The Big-Five trait taxonomy: History, measurement, and theoretical perspectives. In L. A. Pervin & O. P. John (Eds.), Handbook of personality: Theory and research (Vol. 2, pp. 102–138). New York: Guilford Press.

    Google Scholar

  65. Jordan, K., & Huntsman, L. A. (1990). Image rotation of misoriented letter strings: Effects of orientation cuing and repetition. Perception and Psychophysics, 48(4), 363–374.

    Article PubMed Google Scholar

  66. Kahneman, D. (1973). Attention and effort. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar

  67. Kahneman, D., & Beatty, J. (1966). Pupil diameter and load on memory. Science, 154(3756), 1583–1585.

    Article PubMed Google Scholar

  68. Kahneman, D., Tursky, B., Shapiro, D., & Crider, A. (1969). Pupillary, heart rate, and skin resistance changes during a mental task. Journal of Experimental Psychology, 79(1, Pt 1), 164–167.

    Article PubMed Google Scholar

  69. Kahneman, D., & Tversky, A. (1996). On the reality of cognitive illusions. Psychological Review, 103(3), 582–591.

    Article PubMed Google Scholar

  70. Kerns, J. G., Cohen, J. D., MacDonald, A. W., Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303(5660), 1023–1026.

    Article Google Scholar

  71. Klein-Flügge, M. C., Kennerley, S. W., Friston, K., & Bestmann, S. (2016). Neural signatures of value comparison in human cingulate cortex during decisions requiring an effort-reward trade-off. Journal of Neuroscience, 36(39), 10002–10015.

    Article PubMed Google Scholar

  72. Kolling, N., Behrens, T. E. J., Wittmann, M. K., & Rushworth, M. F. S. (2016). Multiple signals in anterior cingulate cortex. Current Opinion in Neurobiology, 37, 36–43.

    Article PubMed PubMed Central Google Scholar

  73. Kool, W., & Botvinick, M. M. (2014). A labor/leisure tradeoff in cognitive control. Journal of Experimental Psychology: General, 143(1), 131–141.

    Article Google Scholar

  74. Kool, W., McGuire, J. T., Rosen, Z. B., & Botvinick, M. M. (2010). Decision making and the avoidance of cognitive demand. Journal of Experimental Psychology: General, 139(4), 665–682.

    Article Google Scholar

  75. Koriat, A., & Norman, J. (1984). What is rotated in mental rotation? Journal of Experimental Psychology. Learning, Memory, and Cognition, 10(3), 421–434.

    Article PubMed Google Scholar

  76. Kruschke, J. K. (2013). Bayesian estimation supersedes the t test. Journal of Experimental Psychology: General, 142(2), 573–603.

    Article Google Scholar

  77. Kurzban, R. (2016). The sense of effort. Current Opinion in Psychology, 7, 67–70.

    Article Google Scholar

  78. Kurzban, R., Duckworth, A., Kable, J. W., & Myers, J. (2013). An opportunity cost model of subjective effort and task performance. Behavioral and Brain Sciences, 36(6), 661–679.

    Article Google Scholar

  79. Lawrence, M. A. (2015). ez: Easy analysis and visualization of factorial experiments. R package version 4.3. http://CRAN.Rproject.org/package=ez. Accessed 01 Mar 2016.

  80. Lee, M. D., & Wagenmakers, E. J. (2013). Bayesian data analysis for cognitive science: A practical course. New York, NY: Cambridge University Press.

    Google Scholar

  81. Lu, C. H., & Proctor, R. W. (1995). The influence of irrelevant location information on performance: A review of the Simon and spatial Stroop effects. Psychonomic Bulletin and Review, 2(2), 174–207.

    Article PubMed Google Scholar

  82. Luu, P., Collins, P., & Tucker, D. M. (2000). Mood, personality, and self-monitoring: Negative affect and emotionality in relation to frontal lobe mechanisms of error monitoring. Journal of Experimental Psychology: General, 129(1), 43–60.

    Article Google Scholar

  83. Luu, P., Tucker, D. M., Derryberry, D., Reed, M., & Poulsen, C. (2003). Electrophysiological responses to errors and feedback in the process of action regulation. Psychological Science, 14(1), 47–53.

    Article PubMed Google Scholar

  84. Ma, Q., Meng, L., Wang, L., & Shen, Q. (2014). I endeavor to make it: Effort increases valuation of subsequent monetary reward. Behavioural Brain Research, 261, 1–7.

    Article PubMed Google Scholar

  85. MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109(2), 163–203.

    Article PubMed Google Scholar

  86. Maier, M. E., Scarpazza, C., Starita, F., Filogamo, R., & Làdavas, E. (2016). Error monitoring is related to processing internal affective states. Cognitive, Affective, and Behavioral Neuroscience, 16(6), 1050–1062.

    Article Google Scholar

  87. Marti, S., Sackur, J., Sigman, M., & Dehaene, S. (2010). Mapping introspection’s blind spot: Reconstruction of dual-task phenomenology using quantified introspection. Cognition, 115(2), 303–313.

    Article PubMed Google Scholar

  88. McGuire, J. T., & Botvinick, M. M. (2010). Prefrontal cortex, cognitive control, and the registration of decision costs. Proceedings of the National Academy of Sciences, 107(17), 7922–7926.

    Article Google Scholar

  89. Miller, J., Vieweg, P., Kruize, N., & McLea, B. (2010). Subjective reports of stimulus, response, and decision times in speeded tasks: How accurate are decision time reports? Consciousness and Cognition, 19(4), 1013–1036.

    Article PubMed Google Scholar

  90. Milyavskaya, M., Inzlicht, M., Johnson, T., & Larson, M. J. (2017). Reward sensitivity following boredom and cognitive effort: A high-powered neurophysiological investigation. Retrieved from http://psyarxiv.com/2czjv. Accessed 16 Aug 2017.

  91. Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134–140.

    Article PubMed Google Scholar

  92. Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework for mesencephalic dopamine systems based on predictive Hebbian learning. The Journal of Neuroscience, 16(5), 1936–1947.

    Article PubMed Google Scholar

  93. Morey, R. D., & Rouder, J. N. (2015). BayesFactor: Computation of Bayes factors for common designs. R package version 0.9.11-1. http://CRAN.Rproject.org/package=BayesFactor. Accessed 01 Mar 2016

  94. Naccache, L., Dehaene, S., Cohen, L., Habert, M. O., Guichart-Gomez, E., Galanaud, D., & Willer, J. C. (2005). Effortless control: Executive attention and conscious feeling of mental effort are dissociable. Neuropsychologia, 43(9), 1318–1328.

    Article PubMed Google Scholar

  95. Navon, D. (1984). Resources—A theoretical soup stone? Psychological review, 91(2), 216.

    Article Google Scholar

  96. Navon, D., & Gopher, D. (1979). On the economy of the human-processing system. Psychological Review, 86(3), 214–255.

    Article Google Scholar

  97. Nieuwenhuis, S., Ridderinkhof, K. R., Blom, J., Band, G. P., & Kok, A. (2001). Error related brain potentials are differentially related to awareness of response errors: Evidence from an antisaccade task. Psychophysiology, 38(5), 752–760.

    Article PubMed Google Scholar

  98. Nishiyama, R. (2014). Response effort discounts the subjective value of rewards. Behavioural Processes, 107, 175–177.

    Article PubMed Google Scholar

  99. Nishiyama, R. (2016). Physical, emotional, and cognitive effort discounting in gain and loss situations. Behavioural Processes, 125, 72–75.

    Article PubMed Google Scholar

  100. Niv, Y., Daw, N. D., Joel, D., & Dayan, P. (2007). Tonic dopamine: Opportunity costs and the control of response vigor. Psychopharmacology (Berl), 191(3), 507–520.

    Article Google Scholar

  101. O’Reilly, J. X., Schüffelgen, U., Cuell, S. F., Behrens, T. E., Mars, R. B., & Rushworth, M. F. (2013). Dissociable effects of surprise and model update in parietal and anterior cingulate cortex. Proceedings of the National Academy of Sciences, 110(38), E3660–E3669.

    Article Google Scholar

  102. Pailing, P. E., & Segalowitz, S. J. (2004). The error-related negativity as a state and trait measure: Motivation, personality, and ERPs in response to errors. Psychophysiology, 41(1), 84–95.

    Article PubMed Google Scholar

  103. Payne, J. W., Bettman, J. R., & Johnson, E. J. (1993). The adaptive decision maker. New York City, NY: Cambridge University Press.

    Google Scholar

  104. Phillips, P. E., Walton, M. E., & Jhou, T. C. (2007). Calculating utility: Preclinical evidence for cost–benefit analysis by mesolimbic dopamine. Psychopharmacology (Berl), 191(3), 483–495.

    Article Google Scholar

  105. Protopapas, A. (2007). CheckVocal: A program to facilitate checking the accuracy and response time of vocal responses from DMDX. Behavior Research Methods, 39, 859–862.

    Article PubMed Google Scholar

  106. R Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Accessed 01 Mar 2016.

  107. Rabbitt, P. M. (1966). Errors and error correction in choice-response tasks. Journal of Experimental Psychology, 71(2), 264–272.

    Article PubMed Google Scholar

  108. Reber, R., Winkielman, P., & Schwarz, N. (1998). Effects of perceptual fluency on affective judgments. Psychological Science, 9(1), 45–48.

    Article Google Scholar

  109. Rouder, J. N. (2014). Optional stopping: No problem for Bayesians. Psychonomics Bulletin and Review, 21(2), 301–308.

    Article Google Scholar

  110. Schönbrodt, F. D., Wagenmakers, E. J., Zehetleitner, M., & Perugini, M. (2017). Sequential hypothesis testing with Bayes factors: Efficiently testing mean differences. Psychological Methods, 22(2), 322.

    Article PubMed Google Scholar

  111. Schraw, G., & Dennison, R. S. (1994). Assessing metacognitive awareness. Contemporary Educational Psychology, 19(4), 460–475.

    Article Google Scholar

  112. Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–1599.

    Article Google Scholar

  113. Shah, A. K., & Oppenheimer, D. M. (2008). Heuristics made easy: An effort-reduction framework. Psychological Bulletin, 134(2), 207–222.

    Article PubMed Google Scholar

  114. Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: An integrative theory of anterior cingulate cortex function. Neuron, 79(2), 217–240.

    Article PubMed PubMed Central Google Scholar

  115. Shenhav, A., Cohen, J. D., & Botvinick, M. M. (2016). Dorsal anterior cingulate cortex and the value of control. Nature Neuroscience, 19(10), 1286–1291.

    Article PubMed Google Scholar

  116. Shenhav, A., Musslick, S., Lieder, F., Kool, W., Griffiths, T. L., Cohen, J. D., & Botvinick, M. M. (2017). Toward a rational and mechanistic account of cognitive effort. Annual Review of Neuroscience, 40, 99–124.

    Article Google Scholar

  117. Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychological Review, 84(2), 127–190.

    Article Google Scholar

  118. Siegler, R. S., & Lemaire, P. (1997). Older and younger adults’ strategy choices in multiplication: Testing predictions of ASCM using the choice/no-choice method. Journal of Experimental Psychology: General, 126(1), 71–92.

    Article Google Scholar

  119. Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2012). A 21 Word Solution. Dialogue, The Official Newsletter of the Society for Personality and Social Psychology, 26(2), 4–7.

    Google Scholar

  120. Simon, H. A. (1982). Models of bounded rationality (Vol. 3): Empirically grounded economic reason. Cambridge, MA: MIT Press.

  121. Simon, H. A. (1990). Invariants of human behavior. Annual Review of Psychology, 41(1), 1–20.

    Article PubMed Google Scholar

  122. Taylor, S. F., Stern, E. R., & Gehring, W. J. (2007). Neural systems for error monitoring: Recent finding and theoretical perspectives. The Neuroscientist, 13(2), 160–172.

    Article PubMed Google Scholar

  123. Van Steenbergen, H., & Band, G. P. H. (2013). Pupil dilation in the Simon task as a marker of conflict processing. Frontiers in Human Neuroscience, 7, 215. https://doi.org/10.3389/fnhum.2013.00215.

    Article PubMed PubMed Central Google Scholar

  124. Vassena, E., Holroyd, C. B., & Alexander, W. H. (2017). Computational models of anterior cingulate cortex: At the crossroads between prediction and effort. Frontiers in Neuroscience, 11, 1–9.

    Article Google Scholar

  125. Vassena, E., Silvetti, M., Boehler, C. N., Achten, E., Fias, W., & Verguts, T. (2014). Overlapping neural systems represent cognitive effort and reward anticipation. PLoS One, 9(3), e91008.

    Article PubMed PubMed Central Google Scholar

  126. Verguts, T., Vassena, E., & Silvetti, M. (2015). Adaptive effort investment in cognitive and physical tasks: A neurocomputational model. Frontiers in Behavioral Neuroscience, 9, 57. https://doi.org/10.3389/fnbeh.2015.00057.

    Article PubMed PubMed Central Google Scholar

  127. Walsh, M. M., & Anderson, J. R. (2009). The strategic nature of changing your mind. Cognitive Psychology, 58(3), 416–440.

    Article PubMed Google Scholar

  128. Wang, L., Zheng, J., & Meng, L. (2017). Effort provides its own reward: Endeavors reinforce subjective expectation and evaluation of task performance. Experimental Brain Research, 235(4), 1107–1118.

    Article PubMed Google Scholar

  129. Westbrook, A., & Braver, T. S. (2015). Cognitive effort: A neuroeconomic approach. Cognitive, Affective, & Behavioral Neuroscience, 15(2), 395–415.

    Article Google Scholar

  130. Westbrook, A., & Braver, T. S. (2016). Dopamine does double duty in motivating cognitive effort. Neuron, 89(4), 695–710.

    Article PubMed PubMed Central Google Scholar

  131. Westbrook, A., Kester, D., & Braver, T. S. (2013). What is the subjective cost of cognitive effort? Load, trait, and aging effects revealed by economic preference. PLoS One, 8(7), e68210.

    Article PubMed PubMed Central Google Scholar

  132. Wickens, C. D. (2002). Multiple resources and performance prediction. Theoretical Issues in Ergonomics Science, 3(2), 159–177.

    Article Google Scholar

  133. Winkielman, P., Schwarz, N., Fazendeiro, T., & Reber, R. (2003). The hedonic marking of processing fluency: Implications for evaluative judgment. In J. Musch & K. C. Klauer (Eds.), The psychology of evaluation: Affective processes in cognition and emotion (pp. 189–217). Mahwah, NJ: Erlbuam.

    Google Scholar

  134. Yeung, N., Botvinick, M. M., & Cohen, J. D. (2004). The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychological Review, 111(4), 931–959.

    Article PubMed Google Scholar

  135. Zipf, G. K. (1949). Human behavior and the principle of least effort. Cambridge, MA: Addison-Wesley.

    Google Scholar

Download references

Author information

Affiliations

 

Additional information

All data and corresponding code are freely available via the Open Science Framework at http://osf.io/2szy3.